Inverse Thio Effects in the Hepatitis Delta Virus Ribozyme Reveal that the Reaction Pathway Is Controlled by Metal Ion Charge Density
نویسندگان
چکیده
The hepatitis delta virus (HDV) ribozyme self-cleaves in the presence of a wide range of monovalent and divalent ions. Prior theoretical studies provided evidence that self-cleavage proceeds via a concerted or stepwise pathway, with the outcome dictated by the valency of the metal ion. In the present study, we measure stereospecific thio effects at the nonbridging oxygens of the scissile phosphate under a wide range of experimental conditions, including varying concentrations of diverse monovalent and divalent ions, and combine these with quantum mechanical/molecular mechanical (QM/MM) free energy simulations on the stereospecific thio substrates. The RP substrate gives large normal thio effects in the presence of all monovalent ions. The SP substrate also gives normal or no thio effects, but only for smaller monovalent and divalent cations, such as Li(+), Mg(2+), Ca(2+), and Sr(2+); in contrast, sizable inverse thio effects are found for larger monovalent and divalent cations, including Na(+), K(+), NH4(+), and Ba(2+). Proton inventories are found to be unity in the presence of the larger monovalent and divalent ions, but two in the presence of Mg(2+). Additionally, rate-pH profiles are inverted for the low charge density ions, and only imidazole plus ammonium ions rescue an inactive C75Δ variant in the absence of Mg(2+). Results from the thio effect experiments, rate-pH profiles, proton inventories, and ammonium/imidazole rescue experiments, combined with QM/MM free energy simulations, support a change in the mechanism of HDV ribozyme self-cleavage from concerted and metal ion-stabilized to stepwise and proton transfer-stabilized as the charge density of the metal ion decreases.
منابع مشابه
A Two-Metal-Ion-Mediated Conformational Switching Pathway for HDV Ribozyme Activation.
RNA enzymes serve as a potentially powerful platform from which to design catalysts and engineer new biotechnology. A fundamental understanding of these systems provides insight to guide design. The hepatitis delta virus ribozyme (HDVr) is a small, self-cleaving RNA motif widely distributed in nature, that has served as a paradigm for understanding basic principles of RNA catalysis. Nevertheles...
متن کاملAn Integrated Picture of HDV Ribozyme Catalysis
R. Russell (ed.), Biophysics of RNA Folding, Biophysics for the Life Sciences 3, DOI 10.1007/978-1-4614-4954-6_8, © Springer Science+Business Media New York 2013 Abstract The hepatitis delta virus (HDV) ribozyme, a small self-cleaving RNA originally identi fi ed in the human pathogen HDV, has been found to be broadly dispersed throughout life. In this article, we describe an integrated approach...
متن کاملMolecular detection of hepatitis delta virus in blood donors with RT-PCR
Abstract Background and Objective: Hepatitis delta virus is an imperfect virus with RNA and its activity depends on the presence of hepatitis B virus. This virus can lead to acute and chronic diseases in the liver. This study aimed to detect the hepatitis delta virus in blood donors with positive Hepatitis B Surface Antigens (HBsAg). Material and Methods: In this Study, 350 serum sa...
متن کاملStructural roles of monovalent cations in the HDV ribozyme.
The hepatitis delta virus (HDV) ribozyme catalyzes viral RNA self-cleavage through general acid-base chemistry in which an active-site cytidine and at least one metal ion are involved. Monovalent metal ions support slow catalysis and were proposed to substitute for structural, but not catalytic, divalent metal ions in the RNA. To investigate the role of monovalent cations in ribozyme structure ...
متن کاملDirect pK(a) measurement of the active-site cytosine in a genomic hepatitis delta virus ribozyme.
Hepatitis delta virus ribozymes have been proposed to perform self-cleavage via a general acid/base mechanism involving an active-site cytosine, based on evidence from both a crystal structure of the cleavage product and kinetic measurements. To determine whether this cytosine (C75) in the genomic ribozyme has an altered pK(a) consistent with its role as a general acid or base, we used (13)C NM...
متن کامل